
1
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

Contents
1 INTRODUCTION ...2

2 THE WELD ARCHITECTURE – MOTIVATION AND DESCRIPTION..3

2.1 THE NEED FOR WELD.. 3
2.1.1 ACID/BASE ..5

2.2 SYSTEM ARCHITECTURE ... 5
2.2.1 Client Infrastructure...6
2.2.2 Server Infrastructure...6
2.2.3 Proxies...6

3 RELATED WORK..9

3.1 COMPUTER-AIDED DESIGN .. 9
3.2 PROXIES... 11
3.3 COLLABORATION ... 12

4 SERVER INFRASTRUCTURE ..13

4.1 SERVER WRAPPER... 13
4.1.1 Introduction..13
4.1.2 Description...14
4.1.3 Conclusions and Future Directions...14

4.2 DATA SERVER .. 15
4.2.1 Introduction..15
4.2.2 Description...16
4.2.3 A Web Version of OCT ...16
4.2.4 Conclusions and Future Directions...18

4.3 THE DISTRIBUTED WORKFLOW SYSTEM.. 19
4.3.1 Workflow Background ..19
4.3.2 Components..20
4.3.3 Transaction Model ..23
4.3.4 Fault Tolerance..24
4.3.5 Conclusions and Future Directions...26

4.4 EXPERIMENTAL RESULTS... 27
4.4.1 Java..28
4.4.2 Database...30

5 CONCLUSIONS AND FUTURE DIRECTIONS ...33

5.1 FUTURE DIRECTIONS FOR COLLABORATION... 33
5.2 FUTURE DIRECTIONS FOR PROXIES... 34

6 REFERENCES ...35

7 APPENDICES ...40

7.1 WELD CLIENT/SERVER COMMUNICATION PROTOCOL... 40
7.2 WELD CLIENT/DATABASE COMMUNICATION PROTOCOL ... 40
7.3 WORKFLOW PROTOCOL... 40

2
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

1 Introduction

The adoption of new technology and computing infrastructure in the Electronic Design

Automation (EDA) industry has played a key role in determining overall chip design

methodology, and thus has played a major role in establishing the resulting tool architectures and

algorithms used to implement design systems. Advances in areas such as software methodology

and environments, operating systems, storage systems, and programming languages have often

had an enormous effect on EDA. The explosive growth in the development of wide-area network

infrastructure over the past few years indicates an opportunity for the industry and the field of

computer science in general to make a leap to a new generation of capabilities. Specifically, we

envision the entire EDA community organized as a single, integrated, distributed environment

that offers the user the ability to create a continually evolvable and adaptable “virtual” design

system that can couple tools, libraries, design, and validation services. Beyond that, the system

could also provide manufacturing, consulting, component acquisition, and product distribution

services, encompassing the developments of companies, universities, and individuals throughout

the world. Users world-wide would be able to collaborate on complex design tasks in a

completely customizable network environment. Example usage could also include companies

seeking to utilize a processing tool that is too expensive or updated too frequently to have

installed on-site, a processor company that wants to allow users to run simulations of its next-

generation chip but does not want to release the actual software for security and espionage

reasons, or a company with large multi-site data sets that would prefer the dynamic movement of

modular tools instead of data relocation. This report describes network (server) infrastructure

developed for such a distributed design system.

3
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

2 The WELD Architecture – Motivation and Description

The goal of the WELD project [WEL96] is to pull together emerging technologies, such as

visualization and alternative interfaces, network communications, and Bayesian search, to

provide a next-generation CAD design system, as shown in Figure 1. Such a system will need to

be scalable, flexible, secure, and cost effective, in order to handle the working sets of modern

VLSI designs, which are approaching two gigabytes of data today and will be considerably larger

in the future. The growth of the working sets, in conjunction with advances in semiconductor

technology, is forcing an increase in design team size as well [SEM97]. One can envision that as

design teams grow and partitioning methods improve, designers will be distributed across

multiple sites, and will need a collaborative, distributed design system to be able to work

together.

2.1 The Need for WELD

Many of the basic ideas behind network computing were introduced in the Multics project

[CV65], but were hampered by the lack of high-speed network infrastructure. Even today,

networks rarely guarantee any degree of quality of service, often ranging widely in response time,

availability, connectivity, and load. The World Wide Web [WWW97] can be viewed as a “bad

multiprocessor”, which has all of the possibilities for parallelization of a normal multiprocessor,

but a great deal more uncertainty in the time, performance, and consistency guarantees that are

offered [NEW96]. The inherent variability of this situation requires that tools seeking to utilize it

Figure 1: The WELD Project

4
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

must themselves be very flexible. Key characteristics that must be considered in designing

systems for such an environment include:

• Scalability: Network services must be able to incrementally support exponential

growth in both the number of users and the number of services. Additional

consideration will need to be given to the ways of distinguishing and finding services,

data interoperability, and wizard-like graphical interfaces to link services together

coherently. Finally, scalable wide-area collaboration will become a necessity as virtual

project teams become more popular.

• Accessibility: The rise in mobile computing will require ubiquitous access, driving a

need for applications that are either platform independent or dynamically adaptable, as

well as consistent, intuitive user interfaces (such as the internet browser). Services and

applications must be available on-demand and be able to adapt to ranges in resources

such as CPU, memory, bandwidth, and storage, perhaps using technologies such as

data migration, agents, and proxies.

• Availability & Robustness: Before users will trust a distributed design system, they

must be confident that access will be uninterrupted, service degradation will be

graceful, recoverable, and infrequent, and that the information travelling through the

network will be secure and private. In addition, suitable means of managing and

protecting intellectual property must be provided, and there must be at least some form

of guarantees for time-critical applications.

• Cost effectiveness: All of the above attributes must be provided in a cost-effective

manner that allows for the exploitation of economies of scale in the network. In

addition, there must be ways to leverage existing software, systems, and toolkits, to

save the cost of re-implementing large quantities of software.

These above goals are, admittedly, very ambitious. The WELD project attempts to take an

initial step in these directions, with a focus on prototyping and developing useful and flexible

infrastructure leading towards the realizations of these goals. Although existing technology has

been leveraged where possible, at times it has been necessary to build infrastructure in areas

where there was insufficient existing technology, including user interface toolkits, protocols,

integration interfaces, data management back-ends, and transaction models. This report begins

with a high-level view of both the client and server network infrastructure provided, and then

goes into detail on servers and proxies. It should be noted that, although this system is being

demonstrated and prototyped using CAD applications , the architecture and infrastructure is

general and thus applicable to other applications as well.

5
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

2.1.1 ACID/BASE

As mentioned above, the “bad multiprocessor” view of the Web requires a different set of

assumptions than more traditional applications. While the traditional transactional database

world is primarily concerned with the ACID properties (Atomicity, Consistency, Isolation, and

Durability)[GRA81], the strong semantics provided by this model come at a high cost and

implementation complexity. The ACID model does not make any guarantees regarding

availability and would rather have a service be unavailable than relax the semantics [FGB+97].

It has been argued that at times it is more important to maintain high availability and low

latency access to information than to ensure strong consistency or durability. Quickly delivered

approximate answers, based on stale or incomplete data, may be more valuable than the correct

answer, which may require a great deal more data or be delivered in an unsuitable timeframe. A

new set of semantics referred to as BASE [FGB+97] (Basically Available, Soft state, Eventual

consistency) has been proposed. The BASE semantics are very applicable when one views the

Web as a “bad multiprocessor”, where remote access latency and bandwidth can vary by orders of

magnitude in comparison to a traditional computer system.

Any system attempting to build structure upon the potentially unreliable and unpredictable

Internet will require a mix of both the ACID and BASE properties. Currently, the majority of

Web applications tend to fall in the camp of BASE, but a large-scale EDA system would require

some of the ACID guarantees as well. Part of the design challenge facing the WELD group is

finding a general architecture that features properties of both and addresses as broad a range of

EDA requirements as possible.

2.2 System Architecture

Part of the trade-off between ACID and BASE discussed above involves the balancing of

services between the desktop (including both locally installed tools and Java applets loaded over

the network) and jobs sent via the network to the outside world for processing or for

parallelization1. The WELD group has at this point prototyped several applications testing the

feasibility and performance of several different approaches. This section gives a high-level

overview of the client, server, and proxy (middleware) infrastructure that has been built.

1 It should be noted that although there is a good case for distributed tools on the Web, there are designers who would
be happy with a good web interface to a system that would allow them to parallelize their applications to speed up
processes that require multiple iterations [PER97]. Although this is possible right now using scripts, it is far from
convenient. The WELD system should be able to accommodate this as well.

6
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

2.2.1 Client Infrastructure

Clients are user programs run on the local desktop or mobile client, either as standalone

applications or as a front-end into the network design system. For instance, the SpecCharts

Editor [LEU97] is primarily standalone, using the network only for file save and load, while the

Project Management application [CHA97] depends upon the network for object structure and

organization. While Java applications run through network browsers (such as Netscape

Navigator [NET97_2]) are used extensively for WELD clients, any programming language that

supports sockets, such as Java, C, C++, or PERL, can be used to build client applications that can

connect to the network back-ends using the generic Client-Server, Client-Database, and

Workflow Communication Protocols (see Appendices). Since the WELD client infrastructure,

including the Java client extensions, sample applications, and detailed information on object

usage, is covered in detail elsewhere [CHA97, LEU97], it will not be discussed here.

2.2.2 Server Infrastructure

Servers in the WELD system are components found in the network that provide a variety of

useful functionality, including data management, information retrieval, registration services, and

workflow services that invoke tools remotely. Server infrastructure built for the WELD project is

covered in detail in Section 4.

2.2.3 Proxies

Proxies are intelligent network applications that reside between the clients and servers, and

have the potential to offer additional services that may not be practical, reasonable, or desirable at

the endpoints. We began our work on proxies while looking for a simple way to bypass the

limitations of the Netscape Java security model, which restricts applets to only be allowed to open

socket connections to the machine from which they were downloaded. While this is a reasonable

restriction that is intended to prevent applets running behind a firewall from making arbitrary

connections to the outside world and potentially sending out unauthorized information, it severely

restricts the client-server possibilities of Java applets. This security model severely restricts the

distributive properties, and thus the scalability, of a network design system based on Java, since it

makes it impossible for a single socket server to be accessible to applets loaded from different

7
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

sources2. A short-term prototyped solution used a proxy run on the same machine as the HTTP

server to detect and forward messages to other machines3. While this is a security violation, it

made it possible to prototype a more realistic configuration that may be possible in future security

models.

While working on this proxy, a wide range of other possibilities for proxies between the

client and server became apparent, including the automatic translation of data into different

formats, the filtering and redirection of data flow between applications, the use of centralized

proxy servers to track and monitor network tool use, remote system administration, collaboration,

caching, and security. Proxy-based system architectures offer significant advantages to a

distributed design system, and will be heavily leveraged in the future of the WELD Project.

Additional information on proxies and proxy architectures are presented in both the Related Work

2 One result of this security model was that due to the platform/licensing dependencies of some of the server software
(such as the Objectivity OODBMS and the Synopsys design compiler, both of which were licensed and only able to
run on one machine), the heaviest loaded server had to also carry the additional weight of being a HTTP server if
applets were to access the database or the design compiler!
3Other systems have been developed recently, such as the Agent Router found in the Java Agent Template [JAT97],
that provide similar functionality.

Figure 2: The WELD System Architecture

8
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

and Future Directions sections below. The workflow server described in Section 4.3 could also

be viewed as a highly intelligent proxy.

9
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

3 Related Work

In the two years since the beginning of the WELD project, many other research and

industrial organizations have also worked in the areas of objects, proxies, and workflow. Indeed,

we are now collaborating with a group of other universities in the VELA project [VEL97] in an

effort to build momentum towards a standard design environment for the Web. Important

background research as well as current research into similar- or sub-areas is discussed in this

section. It should be noted that while an effort is made to present as many of the important

technologies under development as possible, there are currently so many Web-related research

projects underway that it is impossible to keep track of them all.

3.1 Computer-Aided Design

In the early part of this decade, EDA systems were built upon framework models

[HRS+90, WOL94, BRO92, NCS87, JOH92, SS90], which were organized as shown in Figure 3

[HRS+90]. Operating system services were abstracted as supporting user interaction, process

services, local storage, or network services. These facilities were then grouped into those that

supported process management and those that supported physical data management, including

distributed data management on a network. This model was developed to fit the multitasking

process/communication model of the UNIX operating system [BEL78], and is still commonly

used by EDA systems today. Specialized services, including user interfaces, design versioning

and configuration management, and EDA data representation semantic s, were stacked upon this

layer. These, in turn, were used by the specific applications, whether design tools, project

management applications, or users themselves, to implement their particular task. Systems such

as OCT [HMS86, OCT93] were built following this framework approach.

 Although the frameworks have helped make EDA a multi-billion dollar industry, a large

Figure 3: The CAD Framework Model

File
Services

Network
Services

Process
Services

User I/O
Services

Operating System

Physical Data Management

User Interface
Services

Version
Services

Data Management
Services

Tool Integration Interface

Data Representation
Services

Process Management

Foreign Tool
Interface

Design
 Management

Services

Project
Management

Services

Tool
1

Tool
N

Tool
f1

Tool
fM

10
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

quantity of the recent research has involved incremental improvements, for instance in the

specific areas of design data management [SH94, WGF94], design meta data management

[BRE95, FLC95, JB95, SK94, SKR95], and flow, process, and tool management [BBW91,

CNS90, DD91, FBM94, HBL+94, HD96, HT90, KLB97, SBD93, SD96, SGM+94, VVS96].

The goal of the WELD project is to take advantage of currently under-utilized, new technology

available to the industry to enable not an incremental but a generational advance in EDA

technology. Although traditional CAD tools are also being developed by WELD, a primary goal

is to build a standard infrastructure in which no restrictions are placed on data representation,

design methodology, or usage. It is our goal to provide through a set of general services an

abstraction through which CAD developers can easily incorporate their contributions into a

globally compatible system.

The network in the WELD model eliminates the local distinction between process, network,

and secondary storage services present in the frameworks. Instead, all of these services can be

considered simply as different aspects of the abstraction of services provided via the network.

This model makes it possible to leverage all of the recent client-oriented services (some of which

are similar to the WELD infrastructure discussed in Section 4), such as data manipulation and

querying [ASA+95, BDF+97, BEH95, DIS97, GS87, LID96, SOC97, SSU95, VDA96]),

visualization for design and collaboration [CRE97, DAR97], workflow management

(e.g.[CHA97, CS93, LKB+97, RTD97]), and library and part management (e.g. [ASP97, EDT97,

SYN97]).

In the past, much of the distributed tool flow and collaboration work was implemented

under the X-Windows architecture or, more recently, using Tcl/Tk [OUS94]. Some specific

points of interest include:

• The Design Agent system [BEN97], which presents an information-centric paradigm

for CAD systems and could make use of WELD Infrastructure.

• The REUBEN system ([KLB97, LKB+97]), developed by the Collaborative

Benchmarking Laboratory at North Carolina State University (a partner in the VELA

project), which features user-defined and reconfigurable execution sequences by

creating dependency edges between program nodes (application icons) and file nodes

(data icons), data-dependent execution sequences by dynamic scheduling of path as

well as loop executions, and host-transparency as to the location of applications and

data (both can reside on any host with a unique IP address). The system is presently

written in Tcl and makes use of popular protocols such as telnet and ftp.4

4 The REUBEN system also makes use of some WELD tools, including the FSM Editor [Leu97].

11
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

• Active Documents [SIL94], which presents a Web-based system that embeds

compound data for CAD tools in documents using MIME and hyperlinks.

• There are a number of commercial systems available that tackle specific aspects of the

distributed workflow management task for EDA (e.g.[ARF90,91, ASP97, EDT97,

RTD97, SYN97).

At the present, many companies and universities are evaluating the possibilities of networks, Java

[BEA97 BLU97, CCI+97, HAL96, JAV97_1,2, JAT97, MAR97], and advanced object models

[BEN95, NII95, ODM97].

3.2 Proxies

There has been significant work done on proxies at UC Berkeley by Professor Eric

Brewer’s research group. Originally seen as a means of mitigating client and network variation

and as a means to cache data [BKK85], proxies can be placed in varying locations (such as the

client end, server end, or middle) in a network connection to offer variations in the ACID/BASE

models [FGB+97]. As described by Brewer [BF97, FGB+97], proxies have the ability to:

• Support new features without having to add them directly into the servers, as a means

to build services before economies of scale exist and add services that the servers are

not interested in providing.

• Add services without having to stop the existing servers, which would be detrimental

to fault tolerance.

• Perform aggregation, characterization, measurement, and collaboration services over

multiple sites.

• Offer increased flexibility (i.e. on where to place the service) and incremental

scalability.

• Perform added functionality with low overhead – the pass-through delay of a base

proxy, written in PERL, is 3-6% [BMM+96].

Although the proxy architecture developed by this group is very extensive, it does not fully

meet the requirements of CAD applications. Currently, the proxies work best when dealing with

no or soft state, which is clearly not sufficient for CAD. In addition, their proxies usually have to

be trusted in some way. Currently this is not an issue for them, because they are providing

services based upon insecure, public data (for instance in the TranSend system [FGB+97], which

distills Web data)[FG97]. For a distributed design system there would be numerous additions

needed to support both design security as well as some of the necessary ACID semantics. It is

our plan to leverage their infrastructure, making the additions necessary to enable it for CAD.

12
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

3.3 Collaboration

There are numerous projects underway investigating the possibilities of collaborative

aspects of the Web, which are of critical importance to interactive, distributed design

environments. CREW, The Collaboratory for Research on Electronic Work at the University of

Michigan, focuses on the design of new organizations and the technologies of voice, data, and

video communication that make them possible. The CREW Web site [CRE97] contains a

comprehensive set of on-line references on collaboration at many different levels.

Another major project that involves the application of visualization technologies to

collaboration is DARPA's Intelligent Collaboration & Visualization (IC&V) program, which

seeks to enable both teams and teams of teams to collaborate more effectively through distributed

information systems that encode relevant knowledge, expertise, and semantics and that permit

multiple, shareable views of common collaborative information spaces. Their Web site [DAR97]

points to a number of efforts that could eventually be very useful in the EDA world.

13
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

4 Server Infrastructure

This section focuses on the server infrastructure built for the WELD project over the past

two years in the effort to understand the issues involved in the design and implementation of a

distributed design system. Soon after the project began to use Java, it became apparent that it

would be necessary to build additional infrastructure, such as server wrappers and network data

servers. Such infrastructure was investigated, built, and then successfully demonstrated at several

conferences [DAC96, 97], with applications such as the Distributed Workflow System. All of

these are discussed in detail in the following sections, along with some performance data in the

final section.

4.1 Server Wrapper

4.1.1 Introduction

When we began to explore the uses of Java in the WELD project, it quickly became clear

that additional infrastructure would be required in the network. The Java security model prevents

users from saving and loading data to the local hard drive, leaving the network as the only means

of accessing stored data without running the Java code as an application instead of an applet. The

Netscape Java implementation also restricts the set of machines to which an applet can connect to

the machine from which the applet was downloaded, but for a feasibility test this was sufficient.

The first server written was a program watching a socket interface that allowed Serena Leung’s

FSM Editor [LEU97] to save and load files over the network.

It became apparent during the development of the save/load server that such a server could

also be very useful to access legacy batch UNIX tools through Java. A few modifications to the

save/load server transformed it into a server that would allow users to run the state assignment

tool Nova [OCT93] over the network through the FSM Editor. These two servers, in conjunction

with a similar server that wrapped around the Synopsys Design Compiler [DES96] provided the

basis for the 1996 WELD demonstration (see Figure 4) at the Design Automation Conference in

Las Vegas [DAC96].

The experience with these servers and the abundance of possibilities that such servers

could offer to a distributed system motivated the creation of a generic piece of code that would

allow potential service providers to quickly and easily make their own services available on the

network. The result of this effort was the server wrapper [SPI97].5

5 It should be noted that the encapsulation performed here is at a much simpler level than some standards, such as the
CFI encapsulation model [CFI91] or CORBA [OMG97].

14
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

4.1.2 Description

The server wrapper provides a layer of abstraction on top of UNIX sockets [STE90],

allowing users to add tools to the WELD system without having to deal with most of the details

of sockets and calls to the UNIX exec system call. Originally, the server wrapper was written in

C, but over time it evolved to C++ as the group began to use object-oriented techniques and

object databases (see Section 4.2). At this point, the server wrapper contains:

• A network package (the NetChannel class, built to use the SocketClient and SocketServer

classes, both of which inherit from the SocketHandler class) that allows the program to

switch between the roles of a client, server, and proxy in the WELD system.

• The capability (along with examples) to send heartbeats and periodic updates to calling

clients and servers, providing status and failure information to the other side of the

connection.

4.1.3 Conclusions and Future Directions

The server wrapper proved to be instrumental in the WELD demonstration for the 1997

DAC [DAC97]. The server wrapper release was used to quickly integrate into the demonstration

various other Berkeley CAD tools, including SIS [SSL+92], POLIS [POL96], VIS [VIS96], and

Tycho [TYC97]. Other research groups have also used both the wrapper as well as the

underlying object-oriented socket code as a basis for additional functionality in their own

systems.

Figure 4: DAC '96 Demonstration Flow

15
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

It is likely that another version of the server wrapper will be necessary in the future, as

support for collaboration (perhaps interaction and multicast) and interactive design sessions are

added into the WELD system. The current wrapper is geared more towards batch processing, and

would need to be expanded to efficiently handle state and data over multiple sessions (i.e.

debugging a design being simulated on a remote server). Finally, it would also be useful to be

able to wrap tools that run on non-UNIX platforms, especially Windows NT, which is being used

increasingly for CAD [PER97].

4.2 Data Server

4.2.1 Introduction

The location, accessibility, durability, security6, and consistency of data storage are of

crucial importance to a distributed design system. In an effort to utilize existing technology, an

object-oriented database [OBJ97_2] was chosen to handle the back-end data. It should be noted

that there is no underlying restriction on data back-end implementations, and that it should be

quite feasible to build similar support on top of other platforms such as traditional file systems,

hierarchical databases, and relational databases. The intention in using the database was to try

and leverage the built-in services, including versioning, transactions, replication, search and

query capabilities, fault-tolerance, and migration, to:

• Make it easy to create service using the network.

• Promote the creation of flexible object-based data models on the web.

• Simplify the transfer and translation of data between different tools.

• Build infrastructure that would allow us to create and test a prototype distributed

design system on the Web for CAD.

An object database was chosen because it was readily available and seemed to match the object

nature of Java.

The end result of this research phase became persistent Java object management package

[CHA97] that was used to develop a web-based version of the Berkeley OCT Tools [OCT93], a

web-based project manager [CHA97], and a web-based workflow system (see Section 4.3 below).

6 It should be noted that although security is also a primary concern for a distributed design system, our system is a
proof of concept prototype, and does not currently protect data from hostile or malicious attacks. Although we
continue to monitor efforts in the area of web security, at this point we are not actively engaged in such research.

16
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

4.2.2 Description

The data server watches a port on the network, providing data services to remote

applications upon request. Since it accepts generic network socket connections, it can

accommodate any client language that can open a socket, including Java, C/C++ and PERL, thus

allowing the server to support both next-generation and legacy tools.

Messages are sent to the server in text, following the WELD client/database

communication protocol (Appendix 2, Section 7.2). Although fairly short and straightforward,

this protocol can be used to create and link existing objects in a completely arbitrary manner. The

persistent objects used in the front-end clients are mirrored onto the server over the network using

a translation mechanism that the protocol enables. A “root directory” into the object system is

provided via the protocol, from which the client can negotiate through the object graph using

unique object ids or connection information provided by the protocol. Although a “root” is

provided, no structure is imposed onto the application programmer, and there are many alternate

ways in which objects can be ordered and stored, in order to leave as much flexibility and power

as possible in the hands of the application developer.

Upon message reception, the data server goes through a dispatch loop in which actions are

taken based upon the message. The object-oriented nature of the dispatch makes it easy to add

new commands by simply creating a new class to handle the actual message using the existing

messages as templates. Current messages exist in the protocol to handle the save, modification,

browsing, connection, deletion, versioning, query, and retrieval of objects. In addition, a set of

messages based upon the HTTP protocol [HTT97] has been implemented that allows users to

peruse the data contained in the database via a web browser such as Netscape Navigator

[NET97_2].

4.2.3 A Web Version of OCT

The first application of the data server and the persistent object management package was a

web-based version of the Berkeley OCT Tools. OCT acts as the data manager for a large number

of VLSI/CAD applications following the Berkeley CAD framework. Although the OCT Tool

system was designed before the advent of object-oriented programming, the attachment structure

between OCT Objects can be very nicely represented using modern object technology. This, in

conjunction with the fact that OCT remained well-known and used at Berkeley, made it a perfect

candidate for a web-capable object-oriented rewrite using the data server. The class EECS 244,

taught by Professors Newton and Rabaey in Fall Spring 1997, presented an ideal opportunity to

subject the system to users, providing both feedback on the usability of the server and package as

17
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

well as a means to test functionality and limitations. A schema similar to the OCT schema was

developed in the OODB, with the cell as the basic design unit. A cell may have many views,

such as schematic, symbolic, physical, simulation, etc… Facets exist beneath the level of views,

and can contain instances of other cells (which may in turn contain instances of other cells) as

well as other collections of attached objects, such as bags, boxes, terminals, and properties. The

data server follows the OCT convention that objects can be arbitrarily attached to each other,

providing a general mechanism for the organization of data upon which specific policies can be

imposed by the application developer. The role of the Java persistent package is to provide a

layer of abstraction on top of the data server that presents an interface similar to that of the OCT

generator interface.

The three main implementational differences between (Java) OCT and the original OCT

are:

1. The client/user code is written it in Java, an object-oriented programming language, as

opposed to C, which is a procedural language. Object-oriented design and organization

has been utilized.

Figure 5: A Sample Design in the Java OCT System (From EE244)

18
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

2. An object-oriented database is used as a back-end (for load, save, queries, etc.), as

opposed to a UNIX file server.

3. Operations are envisioned to occur over a wide area network (WAN), requiring a greater

emphasis upon protocol efficiency and minimization of network transactions than in

OCT, which was primarily local and used RPC [CHA97, FBG+96, OCT93].

4.2.4 Conclusions and Future Directions

Tool providers have realized the possibilities of combining database technology with the

Web. An example of this is Netscape, which is using part of the ObjectStore database as a tightly

integrated part of its browser, as an alternate means to cookies of storing persistent user data and

to preserve applet data beyond the end of a session [NET97_3]. Since work began on the

persistent object management package there have been numerous industry efforts to fill the needs

of the tool providers. Sun Microsystems has released the Java Database Connectivity (JDBC)

API [JDB97], and many object database companies [INF97_2, NET97_1, OBJ97_2,3] have

committed to creating Java persistent object systems using the Open Database Connectivity

(ODBC) and the Object Database Management Group (ODMG) 2.0 [ODM97] standards. These

standards provide a model for persistence, class naming, and protocol specifications that allow

objects created using the Java language binding to be accessible from C++, Smalltalk, and SQL,

and give designers the flexibility to choose the languages most appropriate for their applications.

Although our system, which was under development during the same period, does not completely

follow the specifics of these models, it is in many ways similar. For instance, in the use of named

roots the WELD system prototype currently uses only one, while ODMG provides for multiple

named roots, and goes into greater depth for federation management, transaction state integrity,

and threading [OBJ97_1]). Similarly, while JDBC offers the options of communicating with the

database by installing ODBC model binary code on the client, using Java to send a generic

protocol which is translated to a database protocol by the server, or direct connection using an all-

Java driver, the WELD system only offers the last option.

In the process, several limitations were discovered in the use of object databases. While

the object model is certainly very useful when creating persistent objects for an object-based

language, it also has weaknesses. Generally, while one can use compiler and language options to

expand the message types and functionality, changes to the object model require a wipe and

recompile of the database, making it very difficult to handle schema evolution [CS286].

Additionally, the data is not as portable as that of the tables of a relational database, which can be

an issue in a Web-based system that would benefit from data migration outside of the database.

19
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

Finally, in some systems the numerous C++ additions, extensions, and macros make the code and

database system very complex, and often require a great deal of finesse to compile, debug, and

run successfully.

In general, however, the WELD persistent object management system fulfilled its original

design goal of providing an infrastructure upon which a prototype distributed design system could

be built. This system is described in Section 4.3 below. In the future, this infrastructure will need

to be extended to support additional users and applications, but by that point, the industry may

have evolved to the point where new off-the-shelf technology could be used.

4.3 The Distributed Workflow System7

The distributed workflow system pulls together all of the infrastructure and components

that were developed previously, including the server wrapper, proxy, and data manager. The

result is a cohesive, distributed design system that both makes use of network tools and addresses

many of the criteria discussed in Sections 1 and 2, including fault tolerance, flexibility,

customization, and ease of use. This application was designed to test the limits of the

infrastructure, as well as generate feedback in the use of and performance of the architecture. An

online demonstration (available at [DAC97]) is available, as well.

4.3.1 Workflow Background

In recent years, there has been increasing demand for workflow systems. Numerous

commercial products are currently offered, including big names such as Lotus Notes [LOT97],

IBM's FlowMark [FLO97], and Digital’s Linkworks [LIN97]. The most common use for

workflow systems is to track the steps (called activities) of a business processes, i.e. loan

approvals, claims processing, or travel reimbursement. Examples of activities for a loan approval

process might include processing an application, obtaining a credit report, or getting a signature.

A business process expressed as a machine-readable group of activities is called a workflow.

Workflow systems are often necessarily distributed because their activities are usually not all

available at a single site. In addition, depending on the application the number of business

processes can scale to the order of hundreds of thousands. The distributed nature and great

number of processes presents a clear need for automated systems that track and report on the

7 This section is based upon both a class paper that I co-wrote with Kristin Wright for Computer Science 286, Spring
1997], as well as the 1997 Design Automation Conference WELD demonstration, which I organized in conjunction with
Francis Chan.

20
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

progress of business processes, and as a result there has been a great deal of research and

development focused on the area of workflow systems.

Despite the amount of research done on workflow systems, the state-of-the-art still has less

functionality, reliability, and robustness than is desired. In general, they have limited fault

tolerance, do not scale well, have poor availability due to lack of replication, do not address

mobile computing needs and lack in adequate transaction models [AAA+97]. Crucial areas of

work include fault tolerance, continuous availability, and replication [MAG+95].

4.3.2 Components

Our distributed workflow system for CAD has five main components that can be

distributed and replicated as desired for fault tolerance.8 The components are:

1. The workflow monitor is a platform-independent Java front-end GUI to the workflow

system that is used to create a workflow or track an existing workflow. The monitor (Shown

in Figure 6) is loaded from a well-known URL using a standard browser such as Netscape.

The browser interface provides a simple, familiar point and click UI, and fosters both ease-of-

8 However, during the development and testing phases, most of the services tended to be run on a single machine for
simplified debugging.

Figure 6: The Workflow Monitor

21
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

use and mobility. Workflow progress is indicated by coloring the tool servers according to

whether their job is in progress, complete, or not started. It should be noted that the

workflow monitor is primarily a front-end, and that most of the processing, except for graph

management, is handled on the workflow server.

2. The tool server is the component of the system that offers the tool service and is equivalent

to the traditional workflow activity. Tool servers can be easily created using the server

wrapper described above (4.1). Upon startup, each tool server registers with the registry and

specifies its capabilities, input formats, and output formats. Upon detection of a process

request, the tool begins to execute and send status messages until completion, at which point

it sends the output data to the specified location.

3. The registry keeps track of the whereabouts of every available tool server and workflow

server in the system. This data can be backed up in a database server, as well.

4. The database server is where the final and intermediate results of the workflow are stored

and is described in Section 4.2.

5. The workflow server is the central point of control for the system. The workflow server is a

proxy that sits between the monitor and the rest of the components in the system. It

communicates with the registry to obtain information about the availability of tools, with the

database server to store and retrieve information about the workflow and results, with the tool

servers to actually handle execution, and with the monitor to get the initial design and to

return status.

In time, if such a system became popular and widely used, a means of handling resource

location would be necessary. While it is realistic to assume that the user can remember or

bookmark a well-known URL, the tool servers and workflow servers will need to be able to find

registries and database servers (In the current prototype, the locations of many of these

components are hard-coded). We have discussed the possibility of using technology such as

multicast (which is also used in the TranSend system [FGB+97]) or Marimba [MAR97] channels

to broadcast the necessary location data, but have at this time not yet formally designed the

functionality. The existence of such systems as Marimba and the Domain Name Servers (DNS)

indicate that this is a problem that can be solved using off-the-shelf technology.

4.3.2.1 Component Interaction

Figure 7 illustrates the component interactions that occur in the system when a workflow is

created. Since this example is meant to give a high-level understanding of the interaction, many

details are omitted.

22
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

• The user accesses a URL to download the tool-flow monitor, which connects to a workflow

server (1).

• Using the monitor, the user builds a workflow by choosing tool servers from a menu,

dropping them onto the page, and connecting them with edges. In addition to this graph, the

user must also specify an email contact point to which status messages should be sent, which

intermediate results should be stored permanently, and the location of any necessary input

files (2).

• Upon execution of the workflow, the applet uploads the completed workflow specification to

the workflow server (3).

• Upon receipt of the workflow, the workflow server queries the registry to verify that the

activity list has a valid ordering (4,7). The registry does so, perhaps contacting the database

server for updated information (5,6). The workflow server then performs some load balance

checks; it can offload the responsibility for the workflow to a less loaded workflow server if

necessary.

• The workflow server sends the updated completed workflow to a database server, where it is

safely stored and can be replicated on any other existing database servers (8). The

information saved includes the order of tool servers, email contact point, intermediate result

commands, and the location of the workflow server that “owns” the workflow.

Figure 7: A Sample Workflow Interaction

23
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

• After the workflow data has been stored, the necessary access information that the workflow

server needs to access the workflow’s information is sent (9). This data is also returned to the

monitor (10), so that the user may perform status queries or reconnect later following some

types of failure.

• Finally, the workflow server begins the execution of the workflow by sending the input file(s)

to the first tool server(s) in the graph (11).

4.3.3 Transaction Model

Workflow systems are usually characterized by long-lived transactions, and thus require

advanced transaction models [SSU95, MAG+95]. The CAD tools offered by the tool servers

could take hours or days to complete. Basic functionality requires that the end result of the

workflow be stored persistently, and fault tolerance and efficiency require that intermediate

results be at least temporarily stored so that a design can be resumed from the last successful

point rather than restarted in case of a tool server failure. Although there is a cost involved in

writing the intermediate data, in the case of long-lived or failure-prone workflow the storage costs

could prevent even more expensive redo operations.

To meet the distributed workflow system needs the traditional transaction model is relaxed

to include groups of what would normally be considered individual transactions rather than each

individual transaction. The level of resolution allowed for commits is that of the activity, since

(1) the main system does not necessarily have access to the data at the resolution of the tool

server internals and (2) any larger granularity will not provide the sufficient fault tolerance.

Intermediate results, if not specifically saved, are deleted once all subsequent activities depending

upon them have committed their results.

In the case of a tool server failure caused by a temporary network partition, it is possible

for the failed node to come back up after the workflow server has detected failure and restarted

the activity at a duplicate tool server (see Fault Tolerance below). In this case multiple tool

servers may attempt to write results and could cause possible inconsistencies. This problem

could be avoided by imposing the rule that only the tool server recognized by the workflow server

is allowed to write results. However, in a case where payment was involved, some special

conditions might be required to prevent double charging (i.e. perhaps payment is rendered for

jobs completed only 9).

9Even that might not suffice, though – for instance, the tool provider is not to blame for network partitions. Internet

payment is a very open topic, but not the focus of this paper, and so is not discussed further here.

24
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

The following paragraphs summarize how the relaxed transaction model handles the ACID

transaction model properties.

• Atomicity is guaranteed at the level of an activity. The data is forced to disk by the data

server before the activity commits. This requirement does not introduce any perceivable

performance degradation when transactions are long.

• Transactions are consistent and no intermediate states are observable because either a tool

server's result is visible (committed) or not. Two-phase commit is used so that no data server

shows a transaction committed until all do. Only currently running tool servers authorized by

the workflow Server are allowed to write results.

• Transactions are isolated because a workflow defines a dependency list between activities.

Since one activity cannot start before all previous activities commit the transactions are

effectively isolated.

• Durability is guaranteed by forcing the data to disk before the transaction commits. This is

not as much of a problem as it would be in high-transaction systems, since jobs are generally

long-lived.

This discussion of the ACID properties is, unfortunately, fairly trivial, primarily because

the workflow system does not at this time support true collaboration. Currently servers could be

set up to provide checkout and locking similar to that of the RCS and CVS [MP97] programs,

with a server (or perhaps a proxy) handling the merge activity. Adding functionality to support

features such as interactive sessions that cache data in tool servers or maintaining a consistent

view of shared data for multiple users present more challenges and would make the ACID

description more interesting for the system. We intend to look into these areas as part of our

future work.

4.3.4 Fault Tolerance

Failure in this system is defined as a lack of progress in a workflow. This lack of progress

can be either caused by a failure of the node on which a component resides, a failure within the

component itself, or a network failure. There are two primary components to our fault tolerance

scheme: (1) heartbeats, which are sent from component to component to convey the fact that they

are still running, and (2) a redundancy system, through which workflow servers recognize when

another workflow server has died and the responsibility for its workflows must be redistributed.

Not all of the features described have been implemented at this point.

25
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

4.3.4.1 Failure Detection: Heartbeats

For any workflow to execute, at least one workflow server and one database server must be

alive and reachable from the user's physical location. Although the system will run with this

minimum configuration, these two servers would be single points of failure, and would not

provide the same level of robustness that multiple servers would. Different components are kept

aware of the continued existence of other running components in the system by sending

heartbeats from (1) database servers to workflow servers, (2) active tool servers to their

responsible workflow server, and (3) each workflow server to its redundant workflow server(s).

The workflow server must be able to assess that at least one database server is alive and

reachable. To accomplish this, the database servers can send a heartbeat out at a system-specified

interval to the workflow servers' multicast address. In the case of redundant database servers, the

database servers also listen to this channel, so that they can suppress their own messages within a

certain interval to avoid message implosion. The registries can also listen in on this channel to

update their information about database server resources. It is key to note that although

redundant messages should be kept at a minimum, every database server must send out its own

message at some minimum interval, to make failure apparent.

Active tool servers send heartbeats back to the workflow server that initiated their jobs. If

a workflow server does not receive the heartbeat within a certain interval of time, it assumes that

Figure 8: Fault Tolerance Mechanisms

26
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

the tool server has failed and will attempt to find another, duplicate tool server to execute that

activity. If it finds one, it restarts the activity and notifies the database server. If it does not find

one, it will notify the user either directly through the monitor or by using the email contact point

saved with the workflow state in the database.10 The workflow server also removes the tool server

from the registry and sends an update to the monitor, if it is running.

4.3.4.2 Workflow Failure Recovery

Ideally, each workflow server would have a backup workflow server willing to take

responsibility for progress should some failure occur. The user could choose this redundant

server, or the registry could use its history and status information to automatically assign a

suitable backup server from its list of all the workflow servers. Workflow servers would, of

course, be updated if there were any changes in the backup system.

Each workflow server sends a heartbeat to its backup at constant intervals. If the backup

does not receive a heartbeat for a specified interval, it attempts to make contact. If no contact can

be made, the backup assumes that the server is unavailable, queries the Database Server to find

which workflows the server had responsibility for, and then attempts to do load balancing of

those workflows between the remaining workflow servers. Email is sent to the contact point

notifying the user of the failure and the URL of the new workflow server. The current activity, if

it is still running, can be updated to send heartbeats and status messages to the replacement

server. If the tool server is also no longer available (i.e. due to a network partition) a new tool

server must be found through the registry.

It is possible that a network upon which the system resides is partitioned in such a way that

each half of the network has all of the components necessary to carry on and the workflow and its

backup are separated. Although the execution of the workflow could continue in tandem, for cost

reasons it might make more sense to use some sort of quorum scheme in conjunction with the

system to prevent needless redundant computation. This is a complex situation, however, and the

prototype system has not reached the point where it is beneficial to address these issues, although

it is recognized that these will become issues for scalability.

4.3.5 Conclusions and Future Directions

Although the full fault tolerance system is still incomplete, the current system prototype

includes all five components, works with basic design flows, detects failures, and allows a user to

10 Of course, this is highly dependent on commercial issues. Currently, all of our tools are available free of charge. In
the future, with commercial tools and associated fees, this policy may need to be revised.

27
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

track a workflow monitor. Although there are many loose ends to be tied off and further

explored, the existing server wrapper and data manager infrastructure made it very easy to

quickly incorporate new tools into the system. Current tools include both simple programs, such

as rwho, finger, email [MAN92], VIS [VIS96], SIS [SSL+92], POLIS [POL96], and the Nova

state optimization tool [OCT93], and several more advanced CAD Tool Servers, such as the

Synopsys Design Compiler [DES96]. In addition, a number of tools were rapidly developed and

integrated into the system by outside developers at Berkeley, including an interactive SIS session

tool and Tycho [TYC97].

The development of this system has uncovered many possibilities for distributed resource

organization, management, and selection. The distributed nature of the tools and the placement

of the workflow server as a proxy makes it very easy to track tool information, including

function, failure rates, help information, and sample designs. In addition, the role of the

workflow server as a proxy simplifies the task of both the client as well as the actual tool servers

while offering a convenient, scalable middle -point at which additional functionality can be added.

For instance, the proxy offers, transparent to the user, fault tolerance (using heartbeats and the

backup workflow server), replication, and the ability to re-start failed designs at checkpoints.

Current limitations of the system and possible future areas of study include interaction with

existing workflow systems, security, collaboration, and fine-grained transactions. While the first

is not really a research topic and the second is beyond our scope, the third and fourth points are

relevant and of interest to us for further research. Smaller-grained transactions and interactive

tool sessions are of particular importance in CAD, where some tools generate 1500 or more files

over the course of the tool's execution [CAS97]. If failure occurs in the middle of such an

activity, it would be desirable to pick up at the failure point. This functionality would require that

the tool be capable of handling the state of its checkpoints, perhaps writing out internal,

intermediate data to the database servers or some other persistent storage. This might require

some modifications to the transaction model.

4.4 Experimental Results

Our prototyping efforts provided us with a wide range of experience ranging from

performance to system organization and distribution. For instance, the prototype workflow

system was developed and tested on a high-speed local area network, and thus does not represent

accurately a widely distributed design environment (although it is very representative of a typical

company's Intranet). Several measurements were made to gauge the effects of wide area

networks on the system using a machine at North Carolina State University (NCSU). It should be

28
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

noted that these measurements are far from exhaustive or complete – they are meant to provide an

estimate of the orders of magnitude involved, in order to gain feedback on the prototype and

pinpoint areas for future work. Tests were run at least several times, and each individual value

was derived over an iteration of 10-20 transfers with the maximum and minimum value

dropped11.

4.4.1 Java

Figure 9 shows a set of data rate comparisons for both local and network data transfer.

Naturally, the C++ server on the local area network operated much faster than the remote server

or the local server that parsed byte by byte (as is required by the current variable -length message

structure). Similarly, it is reasonable that the peak time transfers to NCSU were slower than the

late-night transfers. What was very surprising and revealing was the fact that the byte parsing,

even in C++, delayed the system more than the most expensive wide-area network.

Modifications to the message protocol to reflect these costs could provide significant performance

improvements. Table 1 presents the values of one of the test runs, along with comparisons

between the transfer rates. For the smaller data sizes, there is a clear minimum time interval

required, as well as odd intervals, possibly because of the underlying network (For the local

FDDI network, for instance, there are minimum guaranteed data rates for each workstation, which

skew the results somewhat). However, for the larger data transfers, the measurements scale

reasonably.

11 For some of the larger data values, especially 10MB, the number of runs was reduced, out of politeness.

Data Rate Comparisons

1

10

100

1000

10000

100000

1000000

100B 1 KB 10 KB 100 KB 1 MB 10MB

D a t a S i z e

C++ local, large blocks

C++ local, byte parsing

C++ NCSU, large blocks, late

C++ NCSU, large blocks, peak
time

Figure 9: Data Rate Comparisons

Milliseconds

29
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

Figures 10 and 11 compare the network performance of C++ and various Java

implementations. These results indicate that the basic network capabilities (Figure 10) of C++,

the Sun Java Developer’s Kit (JDK) 1.02 [JAV97_1], and Netscape 3.01 (Sparc) are very similar,

which is reasonable, since all three were running on the same architecture, on top of the same

kernel networking libraries. The Netscape 4.01 (PC) implementation results were radically

different, but this may also be explained by the fact that the PC was on a switched ethernet

instead of FDDI.

Table 1: Data Rate Comparisons
Data
Size

C++, large buffer
(ms)

C++, byte parsing
(ms)

NCSU, large buffer
(ms)

Ratios

 Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. local parse NCSU
100B 36 24 51 37 27 49 114 101 130 1 1 3
1 KB 35 24 46 61 50 71 114 101 130 1 2 3
10 KB 36 26 48 332 323 345 359 347 374 1 9 10

100 KB 56 44 66 2917 2895 2951 1243 1209 1286 1 52 22
1 MB 270 238 359 30510 29736 31789 10482 9959 11718 1 113 39
10MB 2446 2303 2717 284207 282755 286085 97506 97332 97745 1 116 40

When the measurements were changed to take into account parsing (Figure 11), the Java

JDK 1.02 performed nearly as well as C++, but the Netscape implementations performed more

poorly.

Data Rates - Large Buffer

1

10

100

1000

10000

100B 1 KB 10 KB 100 KB 1 MB 10MB

D a t a S i z e

C++

Java1.02

Netscape 3.01 sparc

Netscape 4.02 pc

Figure 10: Large buffer data rates for C++ vs. Java

Milliseconds

30
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

The preceding measurements mirror a variety of problems that were encountered while

using the various Java implementations. Much of the development of the Java side of the system

was done using the JDK. This environment offered very favorable performance and promised a

very portable Java front-end. However, this was not the case, as was discovered when it was

necessary to run the 1997 DAC demonstrations in the Netscape Navigator or Internet Explorer

browsers. Variations and inconsistencies in every version (many were tried) of both Java browser

implementations required numerous rewrites and fixes, leaving us somewhat frustrated with the

language, although still loyal to its ideals.

Another interesting trade-off was that between object resolution and Java performance, the

latter of which was feared to be a system bottleneck. Java applet performance, however, was

quite reasonable, and will probably only get better, due to the anticipated performance

improvements that future optimizations such as just-in-time compilers will offer. In addition, the

focus on a proxy-based architecture (See Section 5), which would off-load much of the work onto

proxies, would mean that the Java client would primarily serve as a lightweight communications

and user interface tool. Object granularity turned out to be more of an issue than the Java

performance.

4.4.2 Database

Java tools developed in the WELD group are divided into two groups: (1) applications such

as the SpecCharts Editor, which runs purely in Java and used the network primarily for save and

load, and (2) applications such as the distributed workflow system and the Project Manager,

which have a heavier dependence upon the network back-ends. In the latter case, and when

Figure 11: Byte parsing data rates for C++ vs. Java

Data Rates - Byte Parsing

1

10

100

1000

10000

100000

100B 1 KB 10 KB 100 KB 1 MB

D a t a S i z e

C++

Java 1.02

Netscape 3.01 sparc

Netscape 4.02 pc

Milliseconds

31
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

attempting to upgrade the SpecCharts Editor to use the data manager, the latency and connection

cost of transporting the resulting large number of persistent Java objects over the network made

system performance unacceptable. Therefore, several schema and protocol additions were made.

For instance, the option to use the protocol in a connection-oriented manner was added (instead of

the previous connectionless-only model) along with Data Objects, which remove object structure

and hierarchy (serving the role of files instead of actual Java classes) but allow for larger and

more efficient data transfers. Even with Data Objects, however, there were problems in Java with

the time required to process large amounts of data received over the network. In this case, it

might prove to be more optimal to make use of or develop new technology to instead move the

programs to the data, especially in CAD applications where the data size can often push the limits

of machine main memory.

The data transfer and organization questions and the appropriateness of the object database

back-end issues were raised at several points during the implementation of the prototype. While

the object-oriented nature and built-in capabilities made the database ideal for the storage of Java

objects, the difficulty of schema evolution and overhead in object transfers made the choice

sometimes rather frustrating and inefficient. The performance of the object database also turned

out to be less than ideal. The results shown in Table 2 indicate that the data manager had nearly

the same performance taking its input from a file as opposed to from a Java network connection

for small objects (the experiment involved 23 small transactions), which leads us to believe that

the data manager, not the Java client, was the bottleneck in the system. We intend to explore the

new off-the-shelf persistent object packages to see if they have similar problems and to gain

further insight into this performance problem.

Table 2: Java vs. file input to the data manager (ms)
Java, DB debugs off Java, DB debugs on File, DB debugs off File, DB debugs on

10505.23333 10873.54933 10660.05875 11071.29325

A data service built upon a file system would have provided a solution very portable to

other platforms, but would have required a great deal of additional infrastructure to handle many

of the built-in capabilities of the object database, including versioning, transactions, object-

linking, ids, and multiple hierarchy. A relational database provides middle ground between the

file system and the object database, offering many of the database capabilities of the object

database, but still requiring additional modifications to add new data types and object hierarchies

(see table in [CHA97]). Since the beginning of the project, object-relational databases [INF97_1]

have become widely popular, and may offer improved trade-offs. Perhaps the most interesting

32
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

new architecture, following our current research focus on proxies, would be a generic, simple

data back-end and a set of proxies to manipulate and store data to it depending on the dynamic

needs of the user and application. The general yet adaptable capabilities of such a model suggest

that it would be the best all-around solution to the network-data management problem.

33
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

5 Conclusions and Future Directions

Computing infrastructure will continue to play a large role in determining overall EDA tool

integration strategies, approaches to data visualization and collaboration, and even the most

effective choice of algorithms for tools. Developments in the network service layer offer the

potential to enable transparent distributed EDA systems that are reliable and secure and that make

distributed collaborative design possible. Associated developments in visualization technologies,

both for data and to support collaboration, are likely to make such environments both efficient

and effective for the design and transfer to manufacturing of electronic systems. The WELD

project will continue in the effort to use emerging technologies, such as distributed computing

infrastructure, for electronic system design. The prototyping efforts and infrastructure made to

date include a data manager, a distributed workflow system, a server wrapper, and a Java client

package [CHA97], all built with scalability, flexibility, and extensibility in mind. Performance

tests indicate that such a system, based upon Java front-ends in conjunction with native proxies

and back-end servers found in the network, is indeed feasible, although there are still issues that

need to be addressed.

Although there is a great deal of core functionality in the prototype system, it currently

only supports one designer per project, and will require improved support for both geographic

and temporal collaboration. In addition, Java still has problems that need to be overcome,

including performance and true platform independence (in the implementations). Success

depends both upon such technical factors as well as upon social factors. For instance, a new

framework must provide sufficient features, be easy to use and extend, and address security

concerns, before the EDA user population will completely embrace it. Our experiences at the

Design Automation Conferences indicate that there is both a great demand and great research

value in such a system, and thus we plan to work with other universities to continue to build the

infrastructure necessary for a distributed design environment.

5.1 Future Directions for Collaboration

The key to successful collaboration will be state management. It will be necessary to build

an architecture in which the desired ACID semantics can be dynamically chosen, providing soft

state, locking, transactions, consistency, availability, and quality of service on demand. Areas of

interest include:

• Generic data models, such as the one under development at IBM for the Silicon

Integration Initiative (SI2, formerly the CAD Framework Initiative, CFI) [SI297], and

data-centric design [BEN97]. These are currently being evaluated.

34
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

• The use of distributed caches in a potentially unreliable network.

• The use of multicast technology [MBO97] for resource location and as a means to

relax the ACID semantics [FGB+97]

• Optimizations necessary for efficient design iteration over the network [CLE97,

CON97].

• The possibility of dynamically creating and distributing interactive Java applets for use

both in the visualization of data, tools, and the current status of the system, as well as

to move the applications to large data sets that should not be sent over the network.

5.2 Future Directions for Proxies

As mentioned previously in Section 3.2, we see proxies as an ideal way to support the

collaborative and state management issues mentioned above. We envision a general architecture

(similar to that of [FGB+97]) in which all the proxies in the EDA network are relatively simple

and architecturally identical, with a set of API’s providing a means to extend the interfaces, as

shown in Figure 12. In this model, the client side could easily be extended to customize and

support human, tool, data/processor cluster, or service use. The network API's, meanwhile, could

be used to implement the various criteria (i.e. reliability, availability, and security) outlined

earlier. The proxy would be able to incorporate abstract datatype handlers as plug-ins, store

client-specific information locally in a profile, and either implement or make use of caches. We

plan to use proxies to enable an adaptable network fabric that automatically adjusts to computer

and network reliability issues.

Figure 12: A Proxy Architecture

35
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

6 References

[AAA+97] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan, “Functionality and Limitations of Current
Workflow Management Systems,” IEEE Expert (Special Issue on Cooperative Information Systems),
1997.

[ARF90] W. Allen, D. Rosenthal, K. Fiduk, “Distributed Methodology Management for Design-in-the-
Large,” IEEE/ACM International Conference on Computer Aided Design, pages 346-349, 1990.

[ARF91] W. Allen, D. Rosenthal, K. Fiduk, “The MCC CAD Framework Methodology Management
System,” Proceedings of the 28th ACM/IEEE-CS Design Automation Conference, pages 694-698,
1991.

[ASA+95] M. Abrams, et al., "Caching Proxies: Limitations and Potentials ," Proceedings of the 4th
International World Wide Web Conference, Boston, MA, Dec. 1995.

[ASP97] Aspect Development, Inc., http://www.aspectonline.com.
[BBW91] K. O. ten Bosch, P. Bingley and P. van der Wolf, "Design Flow Management in the NELSIS

CAD Framework," Proceedings of the 28th ACM/IEEE Design Automation Conference, pp. 711-716,
June 1991.

[BDF+97] W. J. Bolosky, et al., "Operating System Directions for the Next Millennium," Position Paper,
available at http://www.research.microsoft.com/research/os/Millennium/mgoals.html .

[BEA97] A number of excellent references for JavaBeans can be found at http://splash.javasoft.com/beans/.
[BEH95] B. Behlendorf, “A Proposal for Non-Intrusive Community Content Control Using Proxy

Servers,” http://www.organic.com/Staff/brian/community-filters.html.

[BEL78] The Bell System Technical Journal, Special Issue on UNIX, Vol.57, No.6, Jul-Aug., 1978,
contains a collection of papers describing UNIX.

[BEN95] R. Ben-Natan., “CORBA : A Guide to Common Object Request Broker Architecture,” McGraw-
Hill, New York, 1995.

[BEN97] O. Bentz, “An Information-centric Design Exploration and Implementation Server”, Ph.D.
dissertation, UC Berkeley, 1997, http://infopad.EECS.Berkeley.EDU/research/tools/InfoBasedDesign/
dissertation/.

[BF97] E. Brewer and A. Fox, “Internet Services,” Computer Science 294-6, offered Fall 1997 at UC
Berkeley.

[BKK85] F. Bancilhon, W. Kim, and H. Korth, “A Model of CAD Transactions,” Proceedings of the 11th
International Conference on VLDB, 1985.

[BLU97] Bluestone Sapphire/Web, http://www.bluestone.com.

[BMM+96] C. Brooks, M. Mazer et al., “Application-Specific Proxy Servers as HTTP Stream
Transducers,” Fourth International World Wide Web Conference Proceedings, Volume 1, Issue 1
(Winter 1996), http://www.w3j.com/1/brooks.056/paper/056.html.

[BRE95] A. Bredenfeld, "Cooperative concurrency control for design environment," European Design
Automation Conference with EURO-VHDL, pp. 308-313, September 1995.

[BRO92] J. B. Brockman et al., "The Odyssey CAD Framework," DATC Newsletter on Design
Automation , Spring 1992.

[CAS97] Personal communication with A. Casotto, April 1997.
[CCI+97] B. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, and D. Wu, “Javelin:

Internet-Based Parallel Computing Using Java,” 1997 ACM Workshop on Java for Science and
Engineering Computation, June 1997.

[CFI91] CAD Framework Initiative, Inc., “Tool Encapsulation Specification Standard,” CFI Doc. DMM-
91-G-1, 1991.

[CHA97] F. Chan, "Architecture and Infrastructure for a Distributed Design Environment- A Client
Perspective," MS Report, University of California at Berkeley, May, 1997.

[CLE97] ClearCase, http://www.pureatria.com/products/clearcase/index.html.

36
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

[CNS90] A. Casotto, A. R. Newton, and A. Sangiovanni-Vincentelli, “Design Management Based on
Design Traces,” Proceedings of the 27th ACM/IEEE Design Automation Conference, pages 136-141,
1990.

[CON97] Continuus Software Corporation, http://www.continuus.com/ .
[CRE97] CREW, The Collaboratory for Research on Electronic Work, www.crew.umich.edu.

[CS93] A. Casotto and A. L. Sangiovanni-Vincentelli, "Automated Design Management Using Traces,"
IEEE Trans on Computer-Aided Design, Vol.12, No.8, pp.1077-1095, Aug. 1993.

[CS286] CS286 class discussion, UC Berkeley, Spring 1997.

[CV65] F. J. Corbato and V. A. Vyssotsky, "Introduction and Overview of the Multics System," AFIPS
Conference Proceedings, No. 27, pp.185-195, Fall Joint Computer Conference, 1965 (At
http://www.lilli.com/fjcc1.html.).

[DAC96] Article: P. Clarke, “WWW primed for EDA,” Electronic Engineering Times, June 10, 1996,
issue 905. Demonstration materials: http://www-cad.eecs.berkeley.edu/weld/dac96/.

[DAC97] Article: P. Clarke and R. Goering, “Web-based design hoists new sail,” Electronic Engineering
Times, June 16, 1997, issue 958. Demonstration materials: http://www-cad.eecs.berkeley.edu/weld/
dac97/.

[DAR97] The DARPA Intelligent Collaboration & Visualization program (IC&V),
http://www.ito.darpa.mil/ ResearchAreas96/IntellCollabVisual.html.

[DD91] J. Daniell and S. W. Director, "An Object Oriented Approach to CAD Tool Control Within a
Design Framework," IEEE Transactions on Computer-Aided Design, Vol.10, No.6, pp.98-713, Jun.
1991.

[DES96] The Design Compiler Family Datasheet, http://www.synopsys.com/products/logic/
design_comp_ds.html .

[DIS97] The Distributed Clients Project, http://www.osf.org/www/dist_client.
[EDT97] Electronic Design and Technology Network (EDTN), http://www.edtn.com.
[FBM94] N. Filer, M. Brown and Z. Moosa, "Integrating CAD tools into a framework environment using a

flexible and adaptable procedural interface," European Design Automation Conference with EURO-
VHDL, pp. 200-205, September 1994.

[FG97] Personal communication with A. Fox and S. Gribble, Jan. 1997.

[FGB+96] A. Fox, et al., "Extensible Cluster-Based Scalable Network Services,” Proceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSP-16), St. Malo, France, October 1997.

[FLC95] S. T. Frezza, S. Levitan and P. Chrysanthis, "Requirements-based design evaluation,"
Proceedings of the 32nd ACM/IEEE Design Automation Conference, pp. 76-81, June 1995.

[FLO97] IBM Corporation, “IBM FlowMark,” http://www.software.ibm.com/ad/flowmark/.
[GRA81] J. Gray, "The Transaction Concept: Virtues and Limitations, " Proceedings of VLDB, pp.144-

154, Cannes, France, Sept. 1981.
[GS87] H. Garcia-Molina and K. Salem, “Sagas,” Proceedings ACM SIGMOD Conference, 1987.
[HAL96] T. R. Halfhill, “Inside the Web PC,” Byte Magazine, pp. 22-36, March 1996.

[HBL+94] A. Hoeven, O. Bosch, R. Leuken, and P. Wolf, "A flexible access control mechanism for CAD
frameworks," European Design Automation Conference with EURO-VHDL, pp. 188-193, September
1994.

[HD96] J. W. Hagerman and S. W. Director, "Improved tool and data selection in task management,"
Proceedings of the 33rd ACM/IEEE Design Automation Conference, pp. 181-184, June 1996.

[HMS86] D.S. Harrison, P. Moore, R.L. Spickelmier, and A. R. Newton, “Data Management and Graphics
Editing in the Berkeley Design Environment,” Proceedings of the 1986 IEEE International
Conference on Computer-Aided Design, pages 24-27, 1986.

[HRS+90] D. S. Harrison, A. R. Newton, R. L. Spickelmier and T. J. Barnes, "Electronic CAD
Frameworks," Proceedings of the IEEE, vol. 78, no. 2, pp. 393-417, Feb. 1990.

37
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

[HT90] P. van den Hamer and M. A. Treffers, "A data flow based architecture for CAD Frameworks,"
Proceedings of the 1990 IEEE International Conference on Computer-Aided Design, pp. 482-485,
Nov. 1990.

[HTT97] The HTTP specification, http://www.w3.org/Protocols .
[INF97_1] The Informix Universal Web Architecture, http://www.informix.com/informix/bussol/uwa/

uwa.htm.
[INF97_2] Infoscape, www.infoscape.com.
[JAT97] The Java Agent Template, http://java.stanford.edu/java_agent/html/.

[JAV97_1] The Java specification, http://java.sun.com.
[JAV97_2] Javaworld online magazine contains many useful Java references at http://www.javaworld.com.
[JB95] E. W. Johnson and J. B. Brockman. "Incorporating design schedule management into a flow

management system," Proceedings of the 32nd ACM/IEEE Design Automation Conference, pp. 88-93,
June 1995.

[JDB97] The JDBC page, http://java.sun.com/products/jdbc/index.html.

[JOH92] B. Johnson, "A distributed computing environment framework: an OSF perspective," Technical
Report DEV-DCE-TP6-1, OSF, January 1992.

[KLB97] A. Khetawat, H. Lavana, and F. Brglez, “Collaborative Workflow: A Paradigm for Distributed
Benchmarking and Design on the Internet,” Technical Report 1997-TR@CBL-02, North Carolina
State University, 1997.

[LC96] D. B. Lange and D. T. Chang, “Programming Mobile Agents in Java, A White Paper Draft,” IBM
Corporation, September 1996.

[LEU97] S. Leung, “A Java-based SpecChart Design System,” Masters report, MS Report, University of
California at Berkeley, May, 1997.

[LID96] Power Management via the WWW, http://infopad.eecs.berkeley.edu/lidsky/POWER/Power.
[LIN97] Digital Equipment Corporation, “Digital LinkWorks – Delivering Solutions to MIS and End-

Users”, http://www.aberdeen.com/secure/profiles/declink/declink1/declink.htm.

[LKB+97] H. Lavana, et al., "Executable Workflows, "A Paradigm for Collaborative Design on the
Internet," Proceedings of the 34th ACM/IEEE Design Automation Conference, June 1997. Also
available at http://www.cbl.ncsu.edu/publications/.

[LOT97] Lotus Development Corporation, "Lotus Notes: An Overview", http://www.lotus.com/notesr4/
over2d.htm.

[MAG+95] C. Mohan, G. Alonso, R. Günthör, M.Kamath, and B. Reinwald, “An Overview of the Exotica
Research Project on Workflow Management Systems,” Proceedings of the 6th International
Workshop on High Performance Transaction Systems, 1995.

[MAN92] Descriptions of finger, mail, and who are available in section one of the online UNIX
Programmer’s Manual on most UNIX systems, 1992.

[MAR97] Marimba, Inc., http://www.marimba.com.

[MBO97] An excellent introduction to the MBONE, "MBONE (Multicast Backbone)" by Jean Bunn,
Geneva University, is available at http://www.unige.ch/seinf/mbone.html.

[MP97] T. Mikkelsen and S. Pherigo, “Practical Software Configuration Management,” Allyn & Bacon
Publis hing, Inc, 1997.

[NCS87] Network Computing System (NCS) Reference, Apollo Computer Inc., 1987.
[NET97_1] NetDynamics, www.netdynamics.com.

[NET97_2] The Netscape browser, http://www.netscape.com.
[NET97_3] Netscape using ObjectStore, http://www.odi.com/news/MSandNS.html .
[NEW96] Personal communication with Professor A. Richard Newton, 1996.

[NII95] The National Industrial Information Infrastructure Protocols (NIIIP), http://www.niiip.org.
[OBJ97_1] “Objectivity for Java,” The Insider : News and Views for Objectivity Users, July 199.
[OBJ97_2] Objectivity, http://www.objectivity.com.

38
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

[OBJ97_3] ObjectStore, http://www.odi.com.
[OCT93] OCTTOOLS-5.2 Reference Manual, University of California at Berkeley, 1993.

[ODM97] ODMG 2.0 Standard, which includes Java, published July 28, 1997. Press release at
www.odmg.org/pressroom/pressreleases/odmg20.htm.

[OUS94] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[PER97] Personal communication with various designers at and after the 1997 Design Automation
Conference.

[POL96] The Polis home page, http://www-cad.eecs.berkeley.edu/Respep/Research/hsc.

[RTD97] Runtime Design Automation, http://www.rtda.com.
[SBD93] P. R. Sutton, J. B. Brockman and S. W. Director, "Design management using dynamically defined

flows," Proceedings of the ACM/IEEE Design Automation Conference, pp. 648-653, June 1993.

[SD96] P. R. Sutton and S. W. Director, "A description language for design process management,"
Proceedings of the 33rd ACM/IEEE Design Automation Conference, pp. 175-180, June 1996.

[SEM97] SEMATECH, http://www.sematech.org/member/division/dsgn/ecad/home.htm.

[SH94] W. Schettler, S. Heymann, "Towards support for design description languages in EDA
frameworks," Proceedings of the IEEE International Conference on Computer-Aided Design , pp.
762-767, November 1994.

[SI297] The Silicon Integration Initiative, www.si2.org.
[SIL94] M. J. Silva, “Active Documentation for VLSI Design,” Ph.D. dissertation, available as Technical

Report UCB/CSD-94-843, UC Berkeley, Dec. 1994.

[SK94] M. J. Silva and Randy H. Katz, “The case for design using the World Wide Web,” Technical
Report UCB/CSD-94-837, University of California at Berkeley, 1994.

[SKR95] J. Schubert, A Kunzmann and W. Rosentiel, "Reduced design time by load distribution with CAD
framework and methodology information," European Design Automation Conference with EURO-
VHDL, pp. 314-319, September 1995.

[SOC97] NEC Socks, a access-control method that sets up circuit-level gateways using proxies,
http://www.socks.nec.com/ .

[SPI97] The WELD server wrapper, http://www-cad.eecs.berkeley.edu/~mds/wrapper.
[SS90] H. Sarmento and P. R. dos Santos, "Pace - a framework for electronic design automation,"

Proceedings of the IFIP WG 10.2 Workshop on Electronic Design Automation Frameworks, pp. 85-
97, Nov 1990.

[SSL+92] E. M. Sentovich et al, “SIS: A System for Sequential Circuit Synthesis,” Technical Report
UCB/ERL M92/41, May 1992.

[SSU95] A. Silberschatz, M. Stonebraker, and J. Ullman, “Database Research: Achievements and
opportunities into the 21st Century,” Report of a NSF Workshop on the Future of Database Systems
Research, May 1995.

[STE90] W. R. Stevens, “Unix Network Programming,” chapter 6, Prentice-Hall, Inc., 1990.
[SYN97] Synchronicity, http://www.syncinc.com.

[TYC97] The Tycho home page, http://ptolemy.eecs.berkeley.edu/tycho/Tycho.html .
[VDA96] Amin Vahdat, et al. "Turning the Web Into a Computer," available at http://now.cs.berkeley.edu/

WebOS/webos.ps, 1996.

[VEL97] The Vela project, http://www.cbl.ncsu.edu/vela/.
[VIS96] The VIS Group, “VIS: A system for verification and synthesis ,” Proceedings of the 8th

International Conference on Computer Aided Verifications, p428-432, 1996.

[VVS96] I. Videira, P. Verissimo and H. Sarmento, "Efficient communication in a design environment,"
Proceedings of the 33rd ACM/IEEE Design Automation Conference, pp. 169-174, June 1996.

[WWW97] The WWW consortium, http://www.w3.org/WWW/.

[WEL96] WELD: Web Based Electronic Design, http://www-cad.eecs.Berkeley.edu/Respep/Research/-
weld, March, 1996.

39
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

 [WGF94] F. R. Wagner, L. Golendziner, and M. R. Fornari, "A tightly coupled approach to design and
data management," European Design Automation Conference with EURO-VHDL , pp. 194-199,
September 1994.

 [WOL94] P. van der Wolf, CAD Frameworks: Principles and Architecture, Kluwer Academic Publishers,
Boston, 1994.

40
Architecture and Infrastructure for a Distributed Design Environment
A Server Perspective

7 Appendices

7.1 WELD Client/Server Communication Protocol

7.2 WELD Client/Database Communication Protocol

7.3 Workflow protocol

